Identifying Conditional Causal Effects
نویسنده
چکیده
This paper concerns the assessment of the effects of actions from a combination of nonexperimental data and causal assumptions encoded in the form of a directed acyclic graph in which some variables are presumed to be unobserved. We provide a procedure that systematically identifies cause effects between two sets of variables conditioned on some other variables, in time polynomial in the number of variables in the graph. The identifiable conditional causal effects are expressed in terms of the observed joint distribution.
منابع مشابه
A Unified Framework for Defining and Identifying Causal Effects
This paper unifies three complementary approaches to defining, identifying, and estimating causal effects: the classical structural equations approach of the Cowles Commision; the treatment effects framework of Rubin (1974) and Rosenbaum and Rubin (1983); and the Directed Acyclic Graph (DAG) approach of Pearl. The settable system framework nests these prior approaches, while affording significa...
متن کاملLearning causality by identifying common effects with kernel-based dependence measures
We describe a method for causal inference that measures the strength of statistical dependence by the Hilbert-Schmidt norm of kernelbased conditional cross-covariance operators. We consider the increase of the dependence of two variables X and Y by conditioning on a third variable Z as a hint for Z being a common effect of X and Y . Based on this assumption, we collect “votes” for hypothetical ...
متن کاملThe Role of Assumptions in Causal Discovery
The paper looks at the conditional independence search approach to causal discovery, proposed by Spirtes et al. and Pearl and Verma, from the point of view of the mechanism-based view of causality in econometrics, explicated by Simon. As demonstrated by Simon, the problem of determining the causal structure from data is severely underconstrained and the perceived causal structure depends on the...
متن کاملIdentification and Estimation of Causal Effects of Multiple Treatments Under the Conditional Independence Assumption
Identification and Estimation of Causal Effects of Multiple Treatments Under the Conditional Independence Assumption The assumption that the assignment to treatments is ignorable conditional on attributes plays an important role in the applied statistic and econometric evaluation literature. Another term for it is conditional independence assumption. This paper discusses identification when the...
متن کاملA Linear “Microscope” for Interventions and Counterfactuals
Abstract: This note illustrates, using simple examples, how causal questions of non-trivial character can be represented, analyzed and solved using linear analysis and path diagrams. By producing closed form solutions, linear analysis allows for swift assessment of how various features of the model impact the questions under investigation. We discuss conditions for identifying total and direct ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004